Large-scale instabilities of the Laurentide ice sheet simulated in a fully coupled climate-system model

R. CALOV, A. GANOPOLSKI, V. PETOUKHOV, M. CLAUSSEN and R. GREVE


Abstract

Heinrich events, related to large-scale surges of the Laurentide Ice Sheet, represent one of the most dramatic types of abrupt climate change occurring during the last glacial. Here, using a coupled atmosphere-ocean-biosphere-ice sheet model, we simulate quasi-periodic large-scale surges from the Laurentide ice sheet. The average time between simulated events is about 7,000 yrs, while the surging phase of each event last only several hundred years, with a total ice volume discharge corresponding to 5-10 m of sea level rise. In our model the simulated ice surges represent internal oscillations of the ice sheet. At the same time, our results suggest the possibility of a synchronization between instabilities of different ice sheets, as indicated in palaeoclimate records.


Geophysical Research Letters 29 (24), 2216, doi:10.1029/2002GL016078 (2002).

 
Last modified: 2008-09-08